If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-780x=0
a = 12; b = -780; c = 0;
Δ = b2-4ac
Δ = -7802-4·12·0
Δ = 608400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{608400}=780$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-780)-780}{2*12}=\frac{0}{24} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-780)+780}{2*12}=\frac{1560}{24} =65 $
| 15+c=55 | | 55=15x+2 | | 55=15x | | 2.6(5)+5.4(5)=k | | (5x^2)-80=0 | | 2.6x+6=5.4x-8 | | 147=3(1-6x) | | x(2x-1)(x-6)=0 | | (14x^2)+3x-2=0 | | 4-2(a+3)=22 | | y+2=-3(-6) | | v/5=3/8 | | 2*(0.6)*(0.4)=x | | 4x-4x+6=14 | | 4.9x^2+180x+2=0 | | 9x-39+3x+10=47 | | -2(7x+6)=14x-12 | | 9x-39=3x+10 | | n^2+3n-25=0 | | n^2+3n=25 | | x/3=10-x | | 30x2/4x2=0 | | 10x3+30x2/4x2+22x+30=0 | | 5(b-6)=6b-27 | | (2n-1)(3n^2-2n+5)=0 | | D=5/2(m-96) | | |30-7x|=-4 | | 47+9x-39=3x+10 | | x=12-6/2x3 | | −4x−16=20 | | 19=z-32= | | 22×(3x+4)=484 |